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A lattice Boltzmann model for simulating fluids with multiple components and 
interparticle forces proposed by Shan and Chen is described in detail. Macro- 
scopic equations governing the motion of each component are derived by using 
the Chapman-Enskog method. The mutual diffusivity in a binary mixture is 
calculated analytically and confirmed by numerical simulation. The diffusivity is 
generally a function of the concentrations of the two components but inde- 
pendent of the fluid velocity, so that the diffusion is Galilean invariant. The 
analytically calculated shear kinematic viscosity of this model is also confirmed 
numerically. 
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1. INTRODUCTION 

Recently the lat t ice-Boltzmann equat ion (LBE) method has emerged as 
a promising new method of computat ional  fluid mechanics (CFD).  This 
method was developed from a discretized fluid model known as the lattice 
gas au tomaton  (LGA). c 1,2) In  the LGA model, fluid is modeled microscopi- 
cally as a collection of particles moving on a regular lattice along the links. 
The particles collide with each other on lattice sites according to some 
carefully designed collision rules which conserve the number  of particles 
and momentum.  The coarse-grained fluid variables, such as density and 
fluid velocity, can be shown to obey a set of macroscopic equations which 
are very similar to the Navier-Stokes equations. Since only a small number  
of bits are required to characterize the states of each lattice site, and the 
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collision operation is local in the most cases, the LGA can be implemented 
very efficiently for a large number of lattice sites. Fluid motion can then be 
simulated without integrating partial differential equations. 

Although the LGA method has a few highly desirable advantages over 
the conventional methods, it also suffers from intrinsic drawbacks. For 
instance, the large statistical fluctuation limits the practical usage of the 
LGA method. To suppress the statistical noise, McNamara and Zanetti (3) 
suggested modeling the LGA with a lattice Boltzmann equation. Mean 
population, instead of the discrete particles, is used to simulate fluid flows. 
A similar approach was proposed by Higuera and Jimenez (4) in which a 
linearized collision term is used in the lattice Boltzmann equation so 
that the algorithm is computationally more efficient and can be easily 
generalized to three dimensions. More recently, it was pointed o u t  ~5"61 that 
in addition to the suppression of statistical noise, the unphysical artifacts 
in the original LGA, the lack of Galilean invariance and the velocity- 
dependent pressure term, can also be eliminated when a single-relaxation- 
time collision term (also known as the BGK collision term after Bhatnagar, 
Gross, and Krook, ~T~ with a proper choice of the equilibrium distribution 
function is adopted in the lattice Boltzmann equation. Comparisons with 
conventional CFD methods demonstrated that such a LBE model can give 
quite satisfactory results in simulating both hydrodynamic and magneto- 
hydrodynamic problems. ~8'9) 

An interesting and important application of the LGA/LBE methods is 
the simulation of fluid flows with interfaces between multiple phases. There 
are numerous complex flow systems in both natural and industrial pro- 
cesses that involve convection-coupled mass transfer near fluid interfaces. 
The density gradients in such problems are often so large that the conven- 
tional lineair diffusion equation ceases to be an acceptable approximation. 
Such problems have posed considerable difficulties to the conventional 
CFD methods, especially when the interfaces can undergo topological 
changes. Since the formation of fluid interfaces is microscopically due 
to the long-range interaction between the molecules of the fluid, ~~ the 
separation and reconnection of the interfaces require additional terms to be 
inserted in the Navier-Stokes equations. While the method of molecular 
dynamics can treat interfacial problems by taking into account the details 
of the intermolecular interaction, it becomes computationally too expensive 
when the large-scale flow structures have to be modeled simultaneously. 

Because the LGA and LBE methods were developed based on 
microscopic description of fluids, interactions between fluid elements can be 
naturally included. Several LGA/LBE models for multiphase flows have 
been developed since the first introduction of the LGA. Rothmann and 
Keller Ill~ developed the first LGA model for simulation of two immiscible 
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fluids. AoBoltzmann equation version was formulated later, c~2) The same 
idea was used to achieve a low diffusivity in the simulation of partially 
miscible fluidsC~3)with the LBE method. In these models, a repulsive force 
between the two fluid components is the most intense in the interfacial zone 
where the "color gradient" is large. Since the "interfacial zone" is defined 
by an arbitrary small parameter, for the LBE model, a finite-amplitude 
perturbation is required for a phase separation to occur in an initially 
homogeneous system. The early stages of phase separation can be expected 
to have arbitrariness. In addition, these models have other problems, such 
as the anisotropy of the surface tension ~4'12) and difficulties in dealing 
with components with different densities. Appert and Zaleski ~zS) suggested 
another LGA model to simulate a liquid-gas type of phase transition. 
Attractive or repulsive forces exist between particles that are several lattice 
units apart. As the range of the force increases, the system separates into 
two phases. However, the low efficiency and all the problems that plague 
the LGA methods have prevented this model from being used to solve 
practical problems. 

In a previous paper, ~6~ we proposed a scheme to incorporate the 
interparticle forces in LBE models with multiple components. Interaction 
potentials of different nature are defined between particles of the same or 
different components. Each component has its own molecular mass and 
relaxation time. The LBE model was shown to be able to simulate a fluid 
with an arbitrary non-ideal-gas equation of state. When the equation of 
state is properly chosen, phase separation occurs both in single- and 
multiple-component systems. In most cases, the interaction can be restricted 
to involve only nearest neighbors so that the model is computationally 
efficient. Isotropy of the surface tension and the density profile across the 
liquid-gas interface has been shown both analytically and numerically in a 
single-component fluid containing two phases. ~7~ In order for this model 
to be used in quantitative simulations of multiphase flow problems, the 
densities of the two phases have also been obtained analytically as func- 
tions of a temperature-like parameter. 

In a system with more than one component, there could be a very 
complicated dependence on the details of the interaction potential. Several 
phases with different densities and concentrations and multiple diffusion 
processes exist in such a system. In general, the gradients of the concentra- 
tions can be very large and the diffusivity depends on the concentration of 
each component.~ the LBE model can be used to simulate multiphase 
flow with mass transfer between phases, the diffusion process has to be 
well understood and the diffusivity calculated. In this article, we give the 
details of the multiple-component LBE model with interparticle forces. 
In section 2, we derive the macroscopic fluid equations governing the 
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motion of each component using the Chapman-Enskog expansion method. 
We obtain the mutual diffusivity in a binary mixture as a function of the 
concentrations of the components. It does not depend on the fluid velocity. 
In section 3, the diffusivity in a numerical experiment on a two-dimensional 
hexagonal lattice is measured and found to be in excellent agreement with 
the analytical values. Problems involving convection-diffusion processes 
near a two-liquid interface and evaporation in porous media have been 
investigated using the present LBE model. These simulation results will be 
discussed in future publications. 

2. MULTIPLE COMPONENT LATTICE BOLTZMANN MODEL 

We now review the multiple-component LBE model (16) with inter- 
particle forces. Consider the motion of particles of S different components 
on a regular lattice in D-dimensional space. The particles of the trth 
component have the molecular mass of m~, tr= 1,..., S. The population 
of the particles of the ath component having the velocity ea at lattice 
site x and time t is denoted by n~(x,t) where {e,,; a =  1 ..... b} is the set of 
vectors of length c pointing from x to its b neighboring sites. The evolution 
of n~(x, t) is described by the following lattice Boltzmann equations: 

n~(x + e~,, t +  1 ) -n~(x ,  t) 

1 
- [n,~(x, t ) -  naa(eq)(x, t)]; a =  1 ..... S (1) 

T,r 

where r .  is the collision interval of the ath component. On the right-hand 
side, we adopt the BGK collision term and choose the equilibrium distribu- 
tion functions to be n~teql= N,,(n,,, u~q), where 

f {1-do D ,, ~----ff-- + ~_b e ~ �9 
N,(n, u ) =  (.2) 

,, do-T_,  ; 

u-~ D(D + 2) Du2\  
2c4----- i f -  e,,e. : uu-2--~_b); a = I ..... b 

a = O  

(2) 

do>0  is an arbitrary constant. It was shown that this choice of the 
equilibrium distribution corrects the unphysical artifacts of the LGA and 
yields the correct Navier-Stokes equationsJ 5) In the equations above, 
n~ = Z,, n~ is the number density of the ath component, u~ q are parameters 
which will be calculated from the distribution functions and the long-range 
interactions. 
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In the absence of interparticle forces, all the components are ideal 
gases. We assume that the velocities Cq u~, a = 1 ..... S, all equal a common 
velocity u'. Since in this case the total momentum of particles of all 
components should be conserved by the collision operator at each lattice 
site, it follows directly from Eq (1) that 

u' = ~_~__/~ .~_P,~Uo Po- (3 )  

o- o" ~ o "  a 

where p ,  = m~n, is the component mass density, and p~u~ = m~ ~ ,  n~% is 
the a th  component 's momentum. 

We let the strength of the long-range force between particles of compo- 
nent a at site x and particles of component 6 at site x' be proportional to 
the product of their "effective masses" ~%(n,(x))~,~(n~(x')). The "effective 
mass" of the ~th component @~(n~(x)) is defined as a function of the local 
density n~. The form of ~b,(n) can be arbitrarily chosen and will determine 
the equations of state of the fluid components and composite fluid, t~7~ 
Summing over all the components and interacting sites, we find total long- 
range force acting on the particles of the ath component at site x 

F.(x)  = - 4J.(x) ~ 5". G.~(x, x') ~ ( x ' ) ( x ' - x )  (4) 

where the Green's function satisfies G~a(x, x') = G~(x ' ,  x). If  only homo- 
geneous isotropic interactions between the nearest neighbors are allowed, 
G~a(x,x') reduces to the following symmetric matrix with constant 
elements: 

0, ] x - x ' [ > c  (5) 
G~(x,  x')--  ~ ,  N - x ' [  ~ c  

Furthermore, if the densities n~ vary at a spatial scale much larger than the 
lattice spacing c, F~ can be approximated by 

c2b 
Fo ~ - -b-- ~'o E ~ V 0 ~  (6) 

We limit the discussion in this paper to interactions which are homogeneous, 
isotropic, and between nearest neighbors. 

The long range interparticle force introduced above causes an extra 
momentum change to the a th  component in addition to the momentum 
exchange caused by collisions with other components. To incorporate this 
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momentum change in the dynamics of the distribution functions, one can 
simply define 

p~.~ q =pou' +roF~  (7) 

It can be verified that each time step, the momentum change of the a th  
component due to long-range interaction is F~. 

When a long-range force exists, the collision operator does not locally 
conserve the total momentum of all the components, although it does 
conserve the number of particles of each component. By summing Eq. (1) 
over all directions, we obtain a mass-conservation relation for each of 
the S components. Multiplying Eq. (1) by e~ and mo and summing over 
all the b directions and S components, we can obtain the change of total 
momentum at each site. These relations are 

~ n : ( x + e , , t + l ) - ~ n ~ ( x , t ) = O ;  a = l  ..... S (8) 
o a 

~ ,mo~ .n~(x+e~ , t+ l ) eo -~ ' ,mo~ .n~(x , t ) e , ,=~F~  (9) 

The second equation states that during a collision, the total momentum of 
the particles at a lattice site is changed by the interactions with the particles 
on neighboring sites. Nevertheless, the momentum of the whole system can 
be shown to be conserved. We find the change of total momentum of the 
whole system by summing over all the lattice sites, 

d P = ~  ~ F ~ ( x ) = - ~ ,  )-', (~oe~b~(x) ~b~(x+eo)e~ (10) 
X ~r x a ,  t~ o 

Here, e,, is a dummy variable. If there is no net momentum flux at the 
boundaries, as in the case with periodic boundaries, x can be viewed 
as a dummy variable, too. After changes of variable e ~ - e a  and then 
X - -  e a ~ x ,  w e  have 

d P = ~  ~" f ~ r  e. (11) 
X o ' , ~  a 

Since the matrix Go~ is symmetric, we have A P = - z i P ,  and therefore 
AP=O. 

The question arises as how to calculate the macroscopic "fluid 
velocity" from the distribution functions since the momentum of the ath 
component is n% Z~ n.~ before a collision and ( 1 -  l/to)m~Y~. n~e~ + 
(m~/ro) Y'.. n:(~q)e, after collision, as obtained by summing the ditribution 
function before and after collision. They differ by a significant amount in 
regions containing large density gradients such as the interface between two 
phases. Since it is the average of the two values that represents the overall 
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mass transfer, we define the velocity of the whole fluid u to be given by the 
average of the two momentum values summed over all the components. 
We can show that this fluid velocity vanishes at equilibrium. Using Eqs. (7) 
and (3), we find the average to be 

p u = E m , ~ E n : e a + � 8 9  (12) 
a a 

where p = Z~ P~ is the total mass density of the fluid. The second term is 
generally negligible except in the interfacial zone. 

We now follow the Chapman-Enskog method of successive approxi- 
mation t]s'19) to obtain the macroscopic fluid equation of the multiple- 
component LBE model. The equilibrium distribution functions n~ are 
expanded as an infinite series, and the time derivative O/Ot is also divided 
into parts accordingly: 

0 ~ 0 r  
n : =  r=o ~ n:'r'; ~ = r  Z ,= ~ (13) 

Since now the collision operator depends upon the spatial derivatives of 
the densities, it is impossible to choose a distribution function which is a 
function of velocity and density only and makes the collision term vanish. 
We therefore let the leading order distribution functions of all components 
be the equilibrium distribution about the fluid velocity u, namely n~(~ 
N.(no, u), so that a set of macroscopic equations in terms of the correct 
fluid variables can be obtained as the result of the expansion procedure. 
The Boltzmann equation will be satisfied at the next order when terms that 
depend on spatial derivatives are included. Because Z , , n a - n  ~ and 
~ ,m~an~(~  the next order terms will satisfy the following 
equations: 

E n d " ) =  0; Z m~ E n d ' " % =  -- �89 F,, (14) 
a ~ a a 

Taylor-expanding the left-hand side of Eq. (1) to second order and 
using the expansions (13), we have 

n~(x +e . ,  t+  1) -n : (x ,  t) 
Ma(O) ~ ~ , ( I  ) 

0 1 h a  ~(0)  r.~ a(O) ..t_ t-, 2 , ,  a V l " a  

~- Ot +%.v, ,~ . - - - ~ +  

,) 1 01 /'O,n~ (~ Vn~(O) / +eo.Vn:' + ~ ~ + e o .  
/ 

1 ( '01n~(~ Vn~ ~~ (15) +~ea .V \ ~ + e , , -  
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On substituting Eq. (15) into the conservation relations (8)-(9) and 
collecting terms of leading order, the following equations are obtained: 

01 nv 
- - + V . ( n a u )  =0,  a = l  ..... S (16) 

Ot 

01puo_~ + v . I C2(1-dO) p l + puu] = Y,, , (17) 

Using Eq. (16), and noting that Z~ F~-~ - ( c2b /2D)V ~ a  ffaa@,@~, we 
can write Eq. (17) in the form 

Dlu 1 
- -  - V p  ( 1 8 )  
Dt p 

where DJDt=O/Ot + u. ~ ,  and p is the pressure given as function of the 
densities of all the components by the following equation of state: 

c 2 [ ( l - d o ) p + ~  ff~,~,, ~ ]  (19) P=~ 

The second term in Eq. (19), which causes the equation of state of the fluid 
to be one of a nonideal gas, depends explicitly on the interparticle force. 

The terms of the next order in the expansion of the mass-conservation 
relation yield the following equation for each component: 

a 

+ - ~ - V .  ~-~ m~, (Ol~_~(Ole+V.~n:(Oleae,,)= 0 n~, ,i ~, - (20) 

Using Eq. (16), we can evaluate the third term, 

al V-n~/~ / P~ e2( 1 - do) mo -~,,Z n~(~ + Z,, = - p  Vp + ~ Vp~ (21) 

To calculate Z,,m#n~(I)ea in the second term of (21), we substitute the 
expansions of Eq. (13) up to second order into the kinetic equation (1), 
obtaining 

Ot 
a o 

a 
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which when multiplied by v~ and summed over all the components, 
becomes 

1 r . p .  C2( 1 - d 0) 
p(.-u')=y.~o~o+~Zr~ ~ ~- Vp ~ 2~oVpo (23) 

a P ~ 

In the derivation above, Eqs. (14) and (21) are used. The expression 
Y'o m~n~(')% can then be solved from Eq. (22) in terms of the macroscopic 
fluid variables. Combining Eq. (20) with the first-order equation (16), we 
obtain the following equation at second order: 

0p~ 
+ v. (pou) 

+v -p~ ~ovo+--E~p.+~ V~ a~ 
P P ,~ / )  0- 

(24)  

When summed over all the components, the equations above become 
the continuity equation of the whole fluid at second order: 

-~Pt+v.(pu) = 0  (25) 

Mutual diffusivity in a two-component system can be calculated using 
Eq. (24). For notational convenience, we rescale the interaction constants 
ff~a as G~a=bff~a/(l -do). Using Eq. (19), we write Eq. (24) as 

c 3 • 1  + V. (plu) cZ(1-d~ 
D 

(26) 

~tt2 + V- (p2u) V.(BVp2--A Vpl) (27) 
c 2 ( 1  ~ d o )  

D 

Here A and B are functions of the densities of the two components 

A =p2 (p,~2+p2~,p\ ~ ~1) +~,, p,~2+p2~, G,I~,p:-G,_,~2p,p p 

B PI( p'v-'+p2v' ~I+~_P'r2+P2r'G22~2P'-G'2~'P2 
= p \  p P P 

(28) 

(29) 
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where 

~br = ~b.(p ~ and r = d~b,,/dp,. 

We consider the evolution of small perturbations of the densities. Let 
p=pO+p~+..., where pO are uniform, time-independent equilibrium 
densities of the two components, and p~.~po are small perturbations. 
Define the concentration of the a th  component as G,=p~ ~ where 
pO pO o o = = P ,  +P2. Obviously c, + c2 = 1. We linearize Eqs. (26)-(27) about 
the equilibrium densities to obtain 

DP', +pOV. u c2(1-do) v.(AOVp, BOVp~2) 
Dt D (30) 

Dp~+p~176176176  (31) 
Dt - D 

where D/Dt = O/Ot + u. V, and 

A~ (32) 

B~ GI21]/, c2) (33) 

In a pure diffusion process, if we assume the sound speed is much 
larger than the speed of diffusion, the pressure field can be taken as 
uniform. When the equation of state is not an ideal gas one, the total 
density field is not a uniform constant during the diffusion. The density 
perturbations p~ are therefore not independent of each other, and a 
velocity field with a generally nonzero divergence will be generated. In the 
present case, Pl and p~ are related by Eq. (19): 

[ l+~k '~ (G , , r  (34) 

We can then write p] and p~ in terms of a single perturbation field, ~(x), 

p',(x) = 1-1 + ~k~_(a,2~b, + G22ff2)] ~(x) 

p~(x) = - [ 1 + ff',(G,, ~b I + G2, ~k2)] ~(x) 

(35) 

(36) 

It follows from the continuity equation (25) that 

D~ 
[ r + Gv.r - r r + G2, r  b-7 + p ~  u = 0 (37) 
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On substituting the three equations above into either Eq. (30) or (31), we 
find that ~(x) satisfies the following diffusion equation: 

D~ c2(1Ddo) 
Dt [(c, r2+  c 2 r , ) y - ~ ]  V2~ (38) 

where the effect of long-range interaction on the diffusivity is absorbed into 
the single factor 

( I + GII r I//'i)( I + G22@2@~2) - GI2 I//i r r162 
(39) 

Y - 1 + c~ Gi1 r r + c2G22r162 + G12(cl @'1 @2 + c2@~@l) 

y becomes unity in the absence of long-range interaction. Furthermore, if 
the relaxation times of the two components are equal, namely rl = r2 = r, 
the diffusivity becomes c2(1-do)(r-1/2)/D, in agreement with other 
authors.~3'2~ 

A few remarks are called for at this point upon the diffusivity derived 
above. First, the diffusivity depends on the relative density concentration of 
the two components as expected. This dependence, through not only the 
cjs ,  but also the @,'s, is quite general and can theoretically be tuned to 
approximate any given diffusivity. We are therefore able to simulate a class 
of diffusion problems in which the diffusivity can vary and depend on 
concentrations. Second, unlike the LBE model for miscible fluid due to 
Flekk0y, ~2~ in which the mutual diffusivity depends on the velocity of the 
fluid, the diffusivity does not have a velocity dependence. The diffusion in 
the present LBE model is fully Galilean invariant. 

When applied to convection-diffusion problems, we notice that the 
diffusivity can be varied independently of the shear viscosity by changing 
the long-range interaction potential. Generally, attractive forces between 
particles of same component and repulsive forces between different com- 
ponents both tend to decrease the diffusivity. 

The second-order momentum equation can be derived in a way similar 
to that of a one-component fluid without interparticle interaction. ~9~ It 
turns out that long-range interaction does not affect the shear viscosity, at 
least to second order. When multiple components are present, the shear 
viscosity is simply v = c2(Z~ c:,~ - �89 + 2). 

3. NUMERICAL SIMULATION 

In this section, we present results of numerical simulations of the LBE 
model described above. We first measure the mutual diffusivity in a binary 
mixture by studying the decay of a sinusoidal concentration wave with 
small amplitude. The simulation was carried out on a 256 • 16 hexagonal 
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lattice. Initially the perturbations of  the densities of  the two components  
were set up according to Eq. (34) so that the pressure was uniform in the 
whole field. The relaxation times of  the two components  are z~ = 0.7 and 
z- 2 = 1.0. Both number  densities were set equal to unity. The "effective 
masses" were chosen to be ~bl(nl)= 1 - e x p ( - h i )  and t P E = r t  2. The dif- 
fusivity is obtained by measuring the decay rate of  the concentration wave. 
The results of the measurement are plotted in Fig. 1 as a function of  Gi2,  

which measures the strength of  the force between particles of  the two 
components.  Gl~ and G22 a r e  fixed at positive numbers 0.01 and 0.02, 
respectively, so that interactions between all the particles are repulsive. 
Two sets of  data are presented for two different values of  the molecular 
mass of  the second component ,  m 2 -----2 and rn2 = 4. The first component  
always has a molecular mass of  1.0. The density concentrat ion c~ is then 
0.33 and 0.2 in the two cases. In Fig. 1, the solid lines are the analytic 
predictions, which are in excellent agreement with the experimental values. 

The mutual  diffusivity is also measured in the presence of  a uniform 
velocity field parallel to the concentrat ion gradient. No  dependence of  
the diffusivity on the velocity is observed. For  instance, when all the 
parameters are chosen to be the same as in the case above in which m2 = 2 

.>_ 

t~ 

0.09 

0.08 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

0 

-0.01 

i J i i 

0 0.03 0.06 G0.09 0.12 0.15 

Fig. l. Mutual diffusivity in a binary mixture as a function of the strength of the repulsive 
force between the two components. Solid lines are theoretical predictions and the symbols are 
the results of numerical simulation. The two sets data are for two different density ratios of 
the two components. 
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Fig. 2. Shear viscosity as a function of the density of the first component. |nterparticle inter- 
actions exist in the simulation, but this has no effect on the shear viscosity. The solid line is 
the theoretical prediction. 

and G12 = 0.04, the diffusivity measured without flow is 0.0549, compared 
with 0.0550 when a uniform flow of speed 0.2 is present. 

The expression for the shear viscosity is also verified similarly by 
measuring the decay rate of a sinusoidal transverse wave on the same lat- 
tice. The concentrations of the two components are varied by changing the 
molecular mass ratio while keeping the total density of the fluid constant. 
Without loss of generality, we chose the number densities 171 =n2 = 1 and 
p = 5 in the simulation. The relaxation times of the two components are 0.6 
and 1.2, respectively. G12 equals 0.04 here and all other parameters are the 
same as before. The measured viscosity is plotted in Fig. 2 as function of 
the density concentration of the first component. It is again in excellent 
agreement with the analytic prediction indicated by the solid straight line. 

4. CONCLUSIONS 

We have described in detail a multiple-component LBE model with 
interparticle interactions. The equations governing the evolution of the 
densities of the components are derived using the Chapman-Enskog 
technique. The mutual diffusivity and shear viscosity in a binary mixture 
are derived analytically using those equations and the agreement is 
obtained to high accuracy with numerical simulations. The diffusivity 
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generally has an explicit dependence on the concentrations of the two 
components and can be tuned to model physical diffusivities which are 
concentration dependent. When the interparticle interaction is turned off 
and the relaxation times of the two components are equal, the diffusivity 
does not depend on the concentrations, in accordance with other authors. 
The Galilean invariance of the diffusivity in this model is also confirmed by 
numerical simulations. 

In the current paper, we focus our attention to the derivation of macro- 
scopic equations and the transport coefficients of multiple-component 
system, which can be fully or partially miscible. In the latter case, this model 
can be used to simulate fluid flows which involve phase transition and 
interfaces between different phases. The derivation of the transport coef- 
ficients in this case becomes more valuable because in some cases the 
concentration gradients near an interface are so large that the diffusivity 
cannot be approximated as a constant. The dependence of the diffusivity on 
the concentration itself is essential in the study of convection-diffusion 
problems that involve interface. In principle, the phase diagram, the density 
profile across an interface, and the surface tension can be calculated for 
a multiple-component. ~7~ We defer the detailed discussion to a future 
publication. 
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